Minimum clique partition in unit disk graphs

نویسندگان

  • Adrian Dumitrescu
  • János Pach
چکیده

The minimum clique partition (MCP) problem is that of partitioning the vertex set of a given graph into a minimum number of cliques. Given n points in the plane, the corresponding unit disk graph (UDG) has these points as vertices, and edges connecting points at distance at most 1. MCP in unit disk graphs is known to be NP-hard and several constant factor approximations are known, including a recent PTAS. We present two improved approximation algorithms for minimum clique partition in unit disk graphs with a realization: (I) A polynomial time approximation scheme (PTAS) running in time nO(1/ε 2). This improves on a previous PTAS with nO(1/ε ) running time [23]. (II) A randomized quadratic-time algorithm with approximation ratio 2.16. This improves on a ratio 3 algorithm with O(n2) running time [7].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PTAS for Minimum Clique Partition in Unit Disk Graphs

We consider the problem of partitioning the set of vertices of a given unit disk graph (UDG) into a minimum number of cliques. The problem is NP-hard and various constant factor approximations are known, with the current best ratio of 3. Our main result is a polynomial time approximation scheme (PTAS) for this problem on UDG. In fact, we present a robust algorithm that given a graph G (not nece...

متن کامل

Hierarchically Specified Unit Disk Graphs

We characterize the complexity of a number of basic optimization problems for unit disk graphs speciied hierarchically as in BOW83, LW87a, Le88, LW92]. Both PSPACE-hardness results and polynomial time approximations are presented for most of the problems considered. These problems include minimum vertex coloring, maximum independent set, minimum clique cover, minimum dominating set and minimum ...

متن کامل

New results on upper domatic number of graphs

For a graph $G = (V, E)$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_k}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i$ dominates $V_j$ or $V_j$ dominates $V_i$ or both for every $V_i, V_j in pi$, whenever $i neq j$. The textit{upper domatic number} $D(G)$ is the maximum order of an upper domatic partition. We study the properties of upper domatic number and propose an up...

متن کامل

QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs

A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for Maximum Clique on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics ’90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprisin...

متن کامل

Clique coverings and partitions of line graphs

A clique in a graph G is a complete subgraph of G. A clique covering (partition) of G is a collection C of cliques such that each edge of G occurs in at least (exactly) one clique in C. The clique covering (partition) number cc(G) (cp(G)) of G is the minimum size of a clique covering (partition) of G. This paper gives alternative proofs, using a unified approach, for the results on the clique c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2011